- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Van_Bael, Sunshine_A (2)
-
Ahmad, Shehbaz (1)
-
Albert, Julie_N_L (1)
-
Bachelot, Benedicte (1)
-
Bagchi, Robert (1)
-
Farrer, Emily_C (1)
-
MacDougal, Elizabeth_H (1)
-
Markel, Bek_X_L (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract As plant communities respond to global change, there is an urgent need to understand the role of biotic interactions in shaping plant communities' dynamics. Plants simultaneously interact with antagonists and mutualists, and understanding plant community responses to global change requires embracing the complexity of biotic interactions.This cross‐journal Special Feature compiled nine research articles and two mini‐reviews, each investigating multitrophic interactions, such as plant–insect–mycorrhizae, leaf–mycobiome or seed–mycobiome.We organized these papers around five main themes which highlight the complexity of biotic interactions, their context dependency, the impacts of global change on multitrophic interactions, the use of plant–soil feedback experiments and the consequences of multitrophic interactions for plant communities.Synthesis. The articles in this cross‐journal Special Feature highlighted important research directions that would help understand the role of beneficial fungi in moderating plant–enemy interactions and plant community structure. In particular, we recommend the need for more experimental studies manipulating multitrophic interactions and geographically replicated experiments to understand the context dependency and the impacts of climate on these complex interactions.more » « less
-
MacDougal, Elizabeth_H; Markel, Bek_X_L; Farrer, Emily_C; Ahmad, Shehbaz; Albert, Julie_N_L; Van_Bael, Sunshine_A (, Restoration Ecology)Sand made from recycled glass cullet could supplement limited dredged river sand (dredge) in coastal wetland restorations; however, its suitability for wetland plants is unknown. In two experiments, we compared the biomass of several wetland plants in recycled glass sand to growth in dredge. First, we grewSalix nigra,Zizaniopsis miliacea, andSporobolus alterniflorusin fine‐ and coarse‐glass sands, dredge, and a coarse‐glass/dredge mixture. Second, we grewTaxodium distichumandSchoenoplectus californicusin a revised coarse‐glass blend, dredge, and a mix. We characterized the substrate porosity, particle density, and bulk density for both experiments and tested how substrate nutrients, metals, and pH impactedS. californicusleaf contents. We found species‐specific responses to substrates: herbaceous species grew better in the mix and dredge than in glass alone, whereas trees grew equally well in the coarse glass, mix, and dredge. Glass sand was less dense than dredge. When saturated and compressed, finer‐grained glass sand and mixes had lower estimated porosities than coarser glass sand and dredge.S. californicusleaf chemistry resembled that of the plant's substrate. This study demonstrated that wetland plants can grow in glass sand, that mixtures of glass and dredge have species‐specific effects, and that substrate structure and chemistry could help explain these differences. Thus, it opens the door for broader field studies on how glass sand can best be used in coastal restoration efforts.more » « less
An official website of the United States government
